972 resultados para Mass spectrometric method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method is described for the analysis of deuterated and undeuterated alpha-tocopherol in blood components using liquid chromatography coupled to an orthogonal acceleration time-of-flight (TOF) mass spectrometer. Optimal ionisation conditions for undeuterated (d0) and tri- and hexadeuterated (d3 or d6) alpha-tocopherol standards were found with negative ion mode electrospray ionisation. Each species produced an isotopically resolved single ion of exact mass. Calibration curves of pure standards were linear in the range tested (0-1.5 muM, 0-15 pmol injected). For quantification of d0 and d6 in blood components following a standard solvent extraction, a stable-isotope-labelled internal standard (d3-alpha-tocopherol) was employed. To counter matrix ion suppression effects, standard response curves were generated following identical solvent extraction procedures to those of the samples. Within-day and between-day precision were determined for quantification of d0- and d6-labelled alpha-tocopherol in each blood component and both averaged 3-10%. Accuracy was assessed by comparison with a standard high-performance liquid chromatography (HPLC) method, achieving good correlation (r(2) = 0.94), and by spiking with known concentrations of alpha-tocopherol (98% accuracy). Limits of detection and quantification were determined to be 5 and 50 fmol injected, respectively. The assay was used to measure the appearance and disappearance of deuterium-labelled alpha-tocopherol in human blood components following deuterium-labelled (d6) RRR-alpha-tocopheryl acetate ingestion. The new LC/TOFMS method was found to be sensitive, required small sample volumes, was reproducible and robust, and was capable of high throughput when large numbers of samples were generated. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphibian skin secretions are unique sources of bioactive molecules, particularly bioactive peptides. In this study, the skin secretion of the white-lipped tree frog (Litoria infrafrenata) was obtained to identify peptides with putative therapeutic potential. By utilizing skin secretion-derived mRNA, a cDNA library was constructed, a frenatin gene was cloned and its encoded peptides were deduced and confirmed using RP-HPLC, MALDI-TOF and MS/MS. The deduced peptides were identified as frenatin 4.1 (GFLEKLKTGAKDFASAFVNSIKGT) and a post-translationally modified peptide, frenatin 4.2 (GFLEKLKTGAKDFASAFVNSIK.NH2). Antimicrobial activity of the peptides was assessed by determining their minimal inhibitory concentrations (MICs) using standard model microorganisms. Through studying structure–activity relationships, analogues of the two peptides were designed, resulting in synthesis of frenatin 4.1a (GFLEKLKKGAKDFASALVNSIKGT) and frenatin 4.2a (GFLLKLKLGAKLFASAFVNSIK.NH2). Both analogues exhibited improved antimicrobial activities, especially frenatin 4.2a, which displayed significant enhancement of broad spectrum antimicrobial efficiency. The peptide modifications applied in this study, may provide new ideas for the generation of leads for the design of antimicrobial peptides with therapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To develop and validate a simple, efficient and reliable Liquid chromatographic-mass spectrometric (LC-MS/MS) method for the quantitative determination of two dermatological drugs, Lamisil® (terbinafine) and Proscar® (finasteride), in split tablet dosage form. Methods: Thirty tablets each of the 2 studied medications were randomly selected. Tablets were weighed and divided into 3 groups. Ten tablets of each drug were kept intact, another group of 10 tablets were manually split into halves using a tablet cutter and weighed with an analytical balance; a third group were split into quarters and weighed. All intact and split tablets were individually dissolved in a water: methanol mixture (4:1), sonicated, filtered and further diluted with mobile phase. Optimal chromatographic separation and mass spectrometric detection were achieved using an Agilent 1200 HPLC system coupled with an Agilent 6410 triple quadrupole mass spectrometer. Analytes were eluted through an Agilent eclipse plus C8 analytical column (150 mm × 4.6 mm, 5 μm) with a mobile phase composed of solvent A (water) containing 0.1% formic acid and 5mM ammonium formate pH 7.5, and solvent B (acetonitrile mixed with water in a ratio A:B 55:45) at a flow rate of 0.8 mL min-1 with a total run time of 12 min. Mass spectrometric detection was carried out using positive ionization mode with analyte quantitation monitored by multiple reaction monitoring (MRM) mode. Results: The proposed analytical method proved to be specific, robust and adequately sensitive. The results showed a good linear fit over the concentration range of 20 - 100 ng mL-1 for both analytes, with a correlation coefficient (r2) ≥ 0.999 and 0.998 for finasteride and terbinafine, respectively. Following tablet splitting, the drug content of the split tablets fell outside of the proxy USP specification for at least 14 halves (70 %) and 34 quarters (85 %) of FIN, as well as 16 halves (80 %) and 37 quarters (92.5 %) of TBN. Mean weight loss, after splitting, was 0.58 and 2.22 % for FIN half- and quarter tablets, respectively, and 3.96 and 4.09 % for TBN half- and quarter tablets,respectively. Conclusion: The proposed LC-MS/MS method has successfully been used to provide precise drug content uniformity of split tablets of FIN and TBN. Unequal distribution of the drug on the split tablets is indicated by the high standard deviation beyond the accepted value. Hence, it is recommended not to split non-scored tablets especially, for those medications with significant toxicity

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A competitive enzyme-linked immunosorbent assay (ELISA) method for carbaryl quantitation in crop extracts was validated by liquid chromatography (LC) with diode array detection (DAD). For this purpose, six crops (banana, carrot, green bean, orange, peach and potato) were chosen for recovery and reproducibility studies. The general sample preparation included extraction with methanol followed by liquid-liquid partitioning and clean-up on Celite-charcoal adsorbent column of the vegetable extracts. ELISA samples consisted of a diluted LC extract in assay phosphate buffer (pH 7.5). The potential effect of methanol in these samples was evaluated. It was observed that a maximum content of 10% methanol present in the assay buffer could be tolerated without expressive losses in the ELISA performance. Under these conditions, a IC50 similar to 1.48 mu g l(-1) was obtained. A minimum matrix effect with a 1:50 dilution of the methanolic extracts in assay buffer was noticed, except for green bean samples that inhibited completely the assay. For the vegetable extracts, the ELISA sensitivities varied from 3.9 to 5.7 mu g l(-1), and good recoveries (82-96%) with R.S.D.s ranging from 5.7 to 12.1% were found. An excellent correlation between the LC-DAD and ELISA techniques was obtained. The confirmation of the carbaryl in less concentrated samples was achieved by LC-mass spectrometry interfaced with atmospheric pressure chemical ionisation. The [M + H](+)= 202 and [M + H-57](+)=145 ions, equivalent to the protonated molecular and l-naphthol ions, respectively, were used to carbaryl identification in these samples. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multiple reaction monitoring mass spectrometric assay for the quantification of PYY in human plasma has been developed. A two stage sample preparation protocol was employed in which plasma containing the full length neuropeptide was first digested using trypsin, followed by solid-phase extraction to extract the digested peptide from the complex plasma matrix. The peptide extracts were analysed by LC-MS using multiple reaction monitoring to detect and quantify PYY. The method has been validated for plasma samples, yielding linear responses over the range 5–1,000 ng mL−1. The method is rapid, robust and specific for plasma PYY detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of different modern analytical techniques for the mass spectrometric detection of anabolic androgenic steroids (AAS) in human urine was examined in order to enhance the prevalent analytics and to find reasonable strategies for effective sports drug testing. A comparative study of the sensitivity and specificity between gas chromatography (GC) combined with low (LRMS) and high resolution mass spectrometry (HRMS) in screening of AAS was carried out with four metabolites of methandienone. Measurements were done in selected ion monitoring mode with HRMS using a mass resolution of 5000. With HRMS the detection limits were considerably lower than with LRMS, enabling detection of steroids at low 0.2-0.5 ng/ml levels. However, also with HRMS, the biological background hampered the detection of some steroids. The applicability of liquid-phase microextraction (LPME) was studied with metabolites of fluoxymesterone, 4-chlorodehydromethyltestosterone, stanozolol and danazol. Factors affecting the extraction process were studied and a novel LPME method with in-fiber silylation was developed and validated for GC/MS analysis of the danazol metabolite. The method allowed precise, selective and sensitive analysis of the metabolite and enabled simultaneous filtration, extraction, enrichment and derivatization of the analyte from urine without any other steps in sample preparation. Liquid chromatographic/tandem mass spectrometric (LC/MS/MS) methods utilizing electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI) were developed and applied for detection of oxandrolone and metabolites of stanozolol and 4-chlorodehydromethyltestosterone in urine. All methods exhibited high sensitivity and specificity. ESI showed, however, the best applicability, and a LC/ESI-MS/MS method for routine screening of nine 17-alkyl-substituted AAS was thus developed enabling fast and precise measurement of all analytes with detection limits below 2 ng/ml. The potential of chemometrics to resolve complex GC/MS data was demonstrated with samples prepared for AAS screening. Acquired full scan spectral data (m/z 40-700) were processed by the OSCAR algorithm (Optimization by Stepwise Constraints of Alternating Regression). The deconvolution process was able to dig out from a GC/MS run more than the double number of components as compared with the number of visible chromatographic peaks. Severely overlapping components, as well as components hidden in the chromatographic background could be isolated successfully. All studied techniques proved to be useful analytical tools to improve detection of AAS in urine. Superiority of different procedures is, however, compound-dependent and different techniques complement each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present challenge in drug discovery is to synthesize new compounds efficiently in minimal time. The trend is towards carefully designed and well-characterized compound libraries because fast and effective synthesis methods easily produce thousands of new compounds. The need for rapid and reliable analysis methods is increased at the same time. Quality assessment, including the identification and purity tests, is highly important since false (negative or positive) results, for instance in tests of biological activity or determination of early-ADME parameters in vitro (the pharmacokinetic study of drug absorption, distribution, metabolism, and excretion), must be avoided. This thesis summarizes the principles of classical planar chromatographic separation combined with ultraviolet (UV) and mass spectrometric (MS) detection, and introduces powerful, rapid, easy, low-cost, and alternative tools and techniques for qualitative and quantitative analysis of small drug or drug-like molecules. High performance thin-layer chromatography (HPTLC) was introduced and evaluated for fast semi-quantitative assessment of the purity of synthesis target compounds. HPTLC methods were compared with the liquid chromatography (LC) methods. Electrospray ionization mass spectrometry (ESI MS) and atmospheric pressure matrix-assisted laser desorption/ionization MS (AP MALDI MS) were used to identify and confirm the product zones on the plate. AP MALDI MS was rapid, and easy to carry out directly on the plate without scraping. The PLC method was used to isolate target compounds from crude synthesized products and purify them for bioactivity and preliminary ADME tests. Ultra-thin-layer chromatography (UTLC) with AP MALDI MS and desorption electrospray ionization mass spectrometry (DESI MS) was introduced and studied for the first time. Because of the thinner adsorbent layer, the monolithic UTLC plate provided 10 100 times better sensitivity in MALDI analysis than did HPTLC plates. The limits of detection (LODs) down to low picomole range were demonstrated for UTLC AP MALDI and UTLC DESI MS. In a comparison of AP and vacuum MALDI MS detection for UTLC plates, desorption from the irregular surface of the plates with the combination of an external AP MALDI ion source and an ion trap instrument provided clearly less variation in mass accuracy than the vacuum MALDI time-of-flight (TOF) instrument. The performance of the two-dimensional (2D) UTLC separation with AP MALDI MS method was studied for the first time. The influence of the urine matrix on the separation and the repeatability was evaluated with benzodiazepines as model substances in human urine. The applicability of 2D UTLC AP MALDI MS was demonstrated in the detection of metabolites in an authentic urine sample.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of lipid compositions from biological samples has become increasingly important. Lipids have a role in cardiovascular disease, metabolic syndrome and diabetes. They also participate in cellular processes such as signalling, inflammatory response, aging and apoptosis. Also, the mechanisms of regulation of cell membrane lipid compositions are poorly understood, partially because a lack of good analytical methods. Mass spectrometry has opened up new possibilities for lipid analysis due to its high resolving power, sensitivity and the possibility to do structural identification by fragment analysis. The introduction of Electrospray ionization (ESI) and the advances in instrumentation revolutionized the analysis of lipid compositions. ESI is a soft ionization method, i.e. it avoids unwanted fragmentation the lipids. Mass spectrometric analysis of lipid compositions is complicated by incomplete separation of the signals, the differences in the instrument response of different lipids and the large amount of data generated by the measurements. These factors necessitate the use of computer software for the analysis of the data. The topic of the thesis is the development of methods for mass spectrometric analysis of lipids. The work includes both computational and experimental aspects of lipid analysis. The first article explores the practical aspects of quantitative mass spectrometric analysis of complex lipid samples and describes how the properties of phospholipids and their concentration affect the response of the mass spectrometer. The second article describes a new algorithm for computing the theoretical mass spectrometric peak distribution, given the elemental isotope composition and the molecular formula of a compound. The third article introduces programs aimed specifically for the analysis of complex lipid samples and discusses different computational methods for separating the overlapping mass spectrometric peaks of closely related lipids. The fourth article applies the methods developed by simultaneously measuring the progress curve of enzymatic hydrolysis for a large number of phospholipids, which are used to determine the substrate specificity of various A-type phospholipases. The data provides evidence that the substrate efflux from bilayer is the key determining factor for the rate of hydrolysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thermal decomposition of three commercial samples of carboxy-terminated polybutadiene (PBCT) resins was studied by thermogravimetric analysis (TGA) at heating rates varying from 2° to 100°C/min. Kinetic parameters of the decomposition process at different heating rates were evaluated by means of the Fuoss method.1 The decomposition process and the activation energy values are found to be dependent on heating rate. Mass-spectrometric analysis of the decomposition products shows that the pyrolysis products of PBCT resins are mainly low molecular weight hydrocarbons: ethylene, acetylene, butadiene, propadiene, vinylcyclohexene, etc. The rates of evolution of these hydrocarbon products vary with the carboxy content of the PBCT resin. Based on this, a carbonium ion mechanism has been suggested for the thermal decomposition. The data generated from this work are of importance for a consideration of the mechanism of combustion of composite solid propellants based on PBCT binders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensitive and selective liquid chromatographic-tandem mass spectrometric (LC-MS-MS) method was developed to determine olanzapine (OLZ) in human urine. After solid-phase extraction with SPE cartridge, the urine sample was analysed on a C-18 column (Symmetry 3.5 mu m, 50 x 4.6 mm i.d) interfaced with a triple quadrupole tandem mass spectrometer. Positive electrospray ionization was employed as the ionization source. The mobile phase consisted of ammonium acetate (pH 7.8)-acetonitrile (10:90, v/v). The method was linear over a concentration range of 1-100 ngml(-1). The lower limit of quantitation was 1 ngml(-1). The intra-day and inter-day relative standard deviation across three validation runs over the entire concentration range was < 11.5 %. The accuracy determined at three concentrations (8.0, 50.0 and 85.0 ngml(-1) OLZ) was within +/- 1.21 % in terms of relative errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus beta-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln(8)/Glu(8)) in the fengycin variants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The isoflavonoids in Radix astragali were determined and identified by HPLC-photodiode array detection-MS after extraction employing matrix solid-phase dispersion (MSPD). As a new sample preparation method for R. astragali, the MSPD procedure was optimized, validated and compared with conventional methods including ultrasonic and Soxhlet extraction. The amounts of two major components in this herb, formononetin (6) and ononin (2), were determined based on their authentic standards. Four major isoflavonoids, formononetin (6), ononin (2), calycosin (5) and its glycoside (1), and three minor isoflavonoids, (6aR,11aR)-3-hydroxy-9, 10-dimethoxypterocarpan (7), its glycoside (3), and (3R)-7,2'-dihydroxy-3',4'-dimethoxyisoflavone-7-O-beta-D-glycoside (4), were identified based on their characteristic two-band UV spectra and [M + H](+), [aglycone + H](+) and [A1 + H](+) ions, etc. The combined MSPD and HPLC-DAD-MS method was suitable for quantitative and qualitative determination of the isoflavonoids in R. astragali. (C) 2003 Elsevier B.V. All rights reserved.